Internat. J. Agric. Sci. Vol.3 No.2 June, 2007 : 171-175

Effect of combination of grains in media on the sporulation of Nomuraea rileyi (Farlow) Samson

K. ELANCHEZHYAN

Department of Agricultural Entomology, Tamil Nadu Agricultural University, COIMBATORE (T.N.) INDIA

ABSTRACT

Laboratory experiments were conducted to study the Effect of combination of grains in media on the sporulation of *Nomuraea rileyi* (Farlow) Samson. Of the different combinations studied, rice alone favoured significantly the maximum sporulation of 4.49×10^8 conidia/g. Rice + sorghum and rice + pearl millet (3:1) were the next effective treatments (4.16-4.25 conidia/g).

Key words: Agricultural products, Mass production, Entomopathogenic fungi.

INTRODUCTION

Nomuraea rileyi is a slow growing fungus with a preference for maltose as the carbon source (Glare, 1987). In India, natural occurrence of this fungus has been reported on a variety of insects (Vimala Devi, 1999). Although the entomopathogenic fungus. *N. rileyi* was first described more than 100 years ago, no attempt was made to mass-produce and use it for biological control until 1955 (Samson, 1974). Conidiation of *N. rielyi* occurs readily on semi-synthetic media in general. *N. rileyi* could be multiplied on polished rice grains (Silva and Loch, 1987). However, only a few isolates sporulate on cereal grains although mycelial growth occurs readily. Taking into consideration, an attempt has been made to develop a mass production medium for the fungus using agricultural products.

MATERIALS AND METHODS

The influence of different cereal nutritive substrates in combination was studied against *N. rileyi* in six different experiments including five preliminary experiments separately. The treatments were rice alone, rice + cereals at ratios 3:1, 1:1 and 1:3 (experiment 1); pearl millet alone, pearl millet + cereals at ratios 3:1, 1:1 and 1:3 (experiment 2); sorghum alone, sorghum + cereals at ratios 3:1, 1:1 and 1:3 (experiment 3); finger millet alone, finger millet + cereals at ratios 3:1, 1:1 and 1:3 (experiment 4) and maize alone, maize + cereals at ratios 3:1, 1:1 and 1:3 (experiment 5).

Fifty gram of each media of different combinations were prepared in three replicates as in previous experiment. Aliquots of $10 \,\mu$ l containing 10^5 spores were dispensed using micropipette and the cultures were incubated at $25 \pm 0.5^{\circ}$ C for 15 days. The observations on conidia yield, productivity ratio and the computation of cost was done as described earlier.

In the sixth experiment, media that yielded maximum conidia of *N. rileyi* or that gave the highest cost benefit ratio based on media cost were compared. Three replicates of each media was prepared and compared for the different parameters.

RESULTS AND DISCUSSION

Rice in combination with other grains

Of the different combinations studied, rice alone favoured significantly the maximum sporulation of 4.49×10^8 conidia/g. Rice + sorghum and rice + pearl millet (3:1) were the next effective treatments (4.16-4.25 conidia/g). The productivity ratio of various media was not better than rice alone. Among the combinations studied, rice + sorghum, rice + pearl millet, (3:1) and rice + sorghum (1:1) were better than others but not equal to rice. The quantity of media required to produce 1.5×10^{12} spore units ranged from 3.34-3.60 kg in the above treatments. Of them, media composition with rice alone or rice + sorghum (3:1) required minimal quantities to achieve the projected yield. Cost of media for production of 1.5×10^{12} spore units was however, lower in rice + sorghum (1:3), rice + pearl millet (1:3) (1:1.16) and rice + sorghum (1:1) (1:161) (Table 1). Treatments involving in rice + pearl millet (1:3) and rice + sorghum (1:1) were also cost-effective (Table 1).

Sorghum in combination with other grains

The evaluation showed that combination of sorghum + rice either at 1:3 or 1:1 was significantly superior to sorghum alone and its combination with other cereals in varying proportions. A maximum of $4.07-4.10 \times 10^8$